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Abstract 
Current digital cameras suffer from poor performance in low-

light situations when a flash is either not available or not 
beneficial.  In these conditions, the signal-to-noise ratio is low, 
and digitally boosting the signal strength simultaneously boosts 
the noise to unacceptable levels.  In this paper, we present an 
algorithm that utilizes multiple low-light captures to generate an 
improved output image.  Global and local motion estimation 
techniques are proposed to align the multiple captures, followed 
by temporal filtering to achieve noise reduction.  Regions of 
unmatched local motion are detected and excluded from the 
filtering process.  Adaptive spatial filtering is also proposed to 
further reduce noise. 

Introduction  
Current digital cameras suffer from poor performance in low-

light situations when a flash is either not available or not 
beneficial.  Exposure time can be increased to boost the number of 
photons reaching the sensor, but this solution typically reduces 
sharpness in the image if there is any motion in the scene or if the 
camera is not held absolutely steady.  Digital cameras can also 
artificially boost the light intensity with a digital gain factor.  The 
gain factor effectively scales upward the output codevalue for each 
pixel.  The problem with this technique is that it amplifies noise as 
well as signal content.  Low-light images typically have low 
signal-to-noise ratios (SNR), and the gain factor required to boost 
the images to acceptable light levels also causes unacceptable noise 
levels to be present in the images as well. 

In this paper, we address the problem of improving low-light 
camera performance by using multiple captures.  Scenarios in 
which a flash is not available, such as in many camera phones, or 
not beneficial, such as many outdoor shots, are considered.  A 
sequence of high-resolution images is captured and combined to 
produce an improved single output image.   

Given a sequence of low-light captures, the problem of 
producing an improved output image can be approached using 
temporal noise reduction techniques.  The available extra images 
can be used to reduce the noise present in the target image.  If the 
scene remains completely static across all the images, then 
temporal noise reduction can be achieved simply by averaging the 
data temporally.  In this ideal case, each pixel location has 
available several samples of the same pixel value, differing only 
by an independent noise component in each image.  In practice, 
however, there are several difficulties that must be addressed.  
Slight camera jitter between captures results in offsets between 
images.  Even if this global motion is accounted for, any local 
motion within a scene must also be detected.  This can be 
particularly difficult in low-light regions in which the SNR is no 
greater than one (the noise is as strong as the signal content).  

In this paper, we propose an algorithm for achieving 
improved low-light performance in the previously described 
scenario.  A fast global motion estimation step to correct for 
camera jitter is followed by a local motion refinement that detects 
and corrects for object motion.  Temporal sigma filtering is 
performed for regions that have been successfully motion-
compensated.  Finally, an additional adaptive spatial sigma 
filtering step is proposed.   

The remainder of this paper is organized as follows.  In the 
next section, the proposed algorithm is presented.  Experiments 
and results are subsequently detailed, and a summary completes 
the paper. 

The Algorithm 
Temporal noise reduction has been researched thoroughly and 

is well documented in a review paper by Brailean et al. [1].  To 
minimize loss of sharpness, it is important to make sure that 
corresponding pixels from pairs of images are registered properly.  
This is often achieved through motion compensation, which is 
used to align each additional frame with the target reference frame.  
In this paper, a two-step motion estimation and compensation 
model is proposed.  In the first step, a fast, global translational 
motion estimate is calculated using the technique of integral 
projections [2,3].  Some local inaccuracies in this motion estimate 
may remain, requiring a second refinement step.  These local 
inaccuracies may be due to camera nonlinearities, such as barrel 
distortion.  Or they may be due to the inadequacy of a translational 
motion model to represent more complex motion (e.g., rotation or 
perspective changes).  Or they may be due to local motion within 
the scene.  To account for these errors, the second step of the 
motion estimation algorithm comprises a local block-based 
estimate using a restricted search range.  The restricted search 
range avoids excessive computational complexity, and relies on a 
good initial estimate from the integral projection technique. 

Once the frames are aligned, the data can be combined to 
produce a target image with reduced noise.  Simple averaging is 
not sufficient, however, as this blurs edges and reduces sharpness.  
A sigma filter is often used in temporal filtering, however, it 
requires that the SNR be greater than one in order to perform well 
[4].  Otherwise, a threshold can not be set to reduce noise without 
blurring signal content in areas where the alignment is not perfect.  
To solve this problem, a local block-based error metric is used to 
classify each block as successfully or unsuccessfully motion-
compensated.  Only those blocks that are successfully motion-
compensated are included in the temporal sigma filtering process. 

At the completion of temporal filtering, a final spatial sigma 
filter is used to adaptively smooth more aggressively those regions 
of the target image that had few successful motion compensation 
matches from other images, and that therefore had minimal noise 
reduction achieved in the temporal filtering process. 



 

 

Global Motion Estimation 
Integral projections are used to obtain a fast, robust estimate 

of the dominant global translational motion between two frames.  
Local variations, as described above, can subsequently be 
identified in a second block-based motion refinement step.  Details 
on integral projections are provided in [2,3].  Briefly, either 
luminance or green channel data is sufficient for the estimation.  
The data is typically subsampled as well, so green pixels from 
Bayer pattern data can be used successfully [5].  Data from a two-
dimensional image is reduced to two one-dimensional vectors by 
summing data in each row to form a horizontal projection vector, 
where each element of the vector represents the sum of the 
corresponding row of image data, and similarly summing data in 
each column to form a vertical projection vector, as illustrated in 
Figure 1.  This process is repeated for a second image as well. 
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Figure 1.  Integral projections.  The two-dimensional image is converted into 
two one-dimensional projection vectors by summing along rows, and down 
columns. 

The vertical projection vectors from the two images are 
correlated to find the offset providing the best match.  Typically an 
L1-norm (sum of absolute differences) is used as the error metric, 
and the offset with the lowest error is chosen as the horizontal 
motion between the two frames.  The process is repeated 
independently with the horizontal projection vectors to determine a 
vertical motion estimate. 

Computational speedups are possible using two varieties of 
subsampling.  The first subsampling reduces the number of 
samples included when summing a given row or column.  Usually 
it is desirable to have at least 100 samples included in each sum if 
possible.  Excessive subsampling can result in aliasing that 
decreases the accuracy of the motion estimate.  The second 
subsampling involves reducing the precision of the motion 
estimation by only summing data for a subset of the rows or 
columns.  Some precision can be reacquired by interpolating the 
derived projection vectors prior to correlating them at various 
offsets.  Normally this subsampling is restricted to a factor of two, 
which is recovered by interpolation of the projection vectors. 

Local Motion Estimation 
For several reasons outlined above, a global translational 

motion estimate may not be sufficient to accurately represent the 
relationship between two frames.  In order to allow local 

corrections of the global motion estimate, a block-based 
refinement step is used.  Block-based motion estimation adds 
significant complexity to the overall algorithm, so it is desirable to 
restrict the search range during the matching process to minimize 
this cost.  In this work, we use a search range of ±4 pixels, using 
Bayer pattern data restricted to offsets of multiples of two (so that 
the Bayer patterns align).  Furthermore, only the green channel 
Bayer data is used to determine the best offset. 

Temporal Sigma Filtering 
After aligning the frames, the data is combined to achieve the 

desired noise reduction.  Ideally, all the data is averaged together 
to maximize noise reduction.  In practice, however, averaging of 
slightly misaligned data results in a loss of sharpness at edges, and 
can cause ghosting artifacts when motion within the scene is not 
adequately compensated.  To prevent large temporal filtering 
errors, temporal sigma filtering is used to restrict the averaging 
process to include only those pixel values within a certain 
threshold value of the reference pixel value. 

For low-light captures, however, there remains a significant 
hurdle to achieve successful temporal filtering.  Sigma filtering 
requires signals with a high SNR to be successful.  The sigma 
filtering threshold is designed to include in the average those 
pixels that differ from the reference pixel only by noise while 
excluding pixels corresponding to different image structure (e.g., 
across an edge).  SNRs for low-light captures are often very low, 
however, and a threshold set to a typical level of 2σ, where σ is the 
standard deviation of the noise, may result in varying image 
structure being included in the temporal average.  Reducing the 
threshold to prevent inclusion of varying image structure decreases 
the amount of noise reduction possible as well.   

On a pixel level, it is very difficult in low-light captures to 
determine whether the variation from one frame to the next is 
caused by noise or by different image structure (from slight 
misalignment or complete motion compensation failure).  At the 
block level, however, it is possible to recognize an unreliable 
match and to exclude this data from the temporal sigma filtering 
operation.   

Analyzing the L1-norm cost of the best match for a given 
block is not sufficient to detect poor matches in many cases.  When 
the SNR is low, the L1-norm cost resulting from just noise 
variations may be very similar to the L1-norm cost associated with a 
block containing different image structure.  Using the L1-norm, it is 
very difficult to set a robust threshold that identifies when block 
matches can be trusted to be good matches. 

A better method of detecting poor block matches in low-light 
captures exploits the fact that in a good match, the corresponding 
pixels will vary only with a zero-mean noise component.  When 
varying image structure is present, it is likely that the matching 
error will not be zero-mean.  (The mean absolute error may be 
similar in the two cases, but the mean error is typically smaller for 
blocks differing only by noise.) 

Given the noise standard deviation for a single pixel, the noise 
standard deviation for an entire block can be computed, and a 
multiple of this term used as a threshold to detect blocks whose 
best match is likely to contain significant image structure variation.  
Such blocks are excluded from temporal sigma filtering.  In 
aggregate, these block exclusion decisions form a binary map. 



 

 

The block exclusion map for a given image can be made more 
robust by applying general morphological operations to eliminate 
likely outliers and widen the border of suspected motion regions as 
a conservative measure.  In particular, any block tagged for 
exclusion that has all immediate eight-neighbors included can be 
switched to inclusion status.  Similarly, any block tagged for 
inclusion that has at least four of its immediate eight-neighbors 
tagged for exclusion can be switched to exclusion status. This 
second step helps to guarantee that the entirety of moving regions 
is excluded. 

This technique is very successful at reducing ghosting artifacts 
that occur when the temporal filtering step includes data from a 
moving region that is not successfully motion-compensated. 

Spatial Sigma Filtering 
Spatial sigma filtering is commonly applied to the problem of 

noise reduction for a single image.  In the proposed low-light 
scenario, temporal noise reduction is used initially to exploit the 
presence of multiple frames and reduce the noise present in the 
reference image.  Once this step is completed, standard spatial 
sigma filtering can be applied, with the variation that the temporal 
filtering has changed the noise statistics of the image in a 
potentially nonuniform way.   

In a static scene in which every pixel is registered correctly 
and all data from multiple frames is used in the temporal average, 
the standard deviation of the noise is reduced by a factor of n , 
where n is the number of images.  If blocks of data are excluded 
from the averaging filter for some regions, the expected reduction 
in noise becomes nonuniform, and it is necessary to make the 
spatial sigma filter adaptive to the changing standard deviation of 
the noise that is a function of the number of data values included 
in the temporal filter. 

Nonuniformity of the temporal noise reduction may also 
result in visible noise variation in the output image.  To minimize 
this effect, the spatial sigma filtering neighborhood is also made 
adaptive as a function of the number of data values included in the 
temporal filter.  A larger spatial neighborhood is used for pixels 
that achieved less temporal noise reduction.  The larger 
neighborhood increases the potential for noise reduction for these 
pixels, but comes with the cost of loss of sharpness. 

Experiments and Results 
Simulations were performed in MATLAB using raw sensor 

data obtained from a Kodak EasyShare CX7430 zoom digital 
camera.  Burst mode was used to collect six frames of data at a rate 
of approximately three frames per second.  Each image was 
captured as Bayer pattern data, and temporal noise reduction was 
performed on the Bayer data.  The use of Bayer data for temporal 
noise reduction avoided the CPU time and memory needed to 
process and CFA interpolate all six images.  Temporal noise 
reduction on Bayer data also required only approximately one-
third the computations of temporal noise reduction on interpolated 
data.  The main drawback of working with Bayer data was that the 
global and local motion estimation algorithms were restricted to 
offsets that were multiples of 2, both horizontally and vertically, to 
ensure Bayer pattern alignment.  This resulted in some 
misalignment and blurring across edges that could potentially be 
reduced if single pixel motion estimation were used in conjunction 
with full resolution data. 

Six burst images were captured of a scene with a static 
background and a moving person in the middle of the frame.  The 
camera was hand-held, resulting in slight camera jitter.  Figure 2 
shows a small version of the original captured reference frame. 

 

 
Figure 2.  Original image captured in low light. 

Figure 3 shows small versions of all six images after the gain 
factor was applied.  The reference image is the middle image on 
the right side.  While the background is static for all six images, 
the person on the couch is moving from frame to frame. 
 

  
 

   
 

   
Figure 3.  Six images with only gain factor applied.  The reference frame in 
this example is the middle image in the right column.   

Figure 4 illustrates the difficulty with temporal sigma filtering 
of low-SNR images using only global motion estimation.  In this 
case, the integral projection algorithm correctly determined the 
dominant global camera jitter, but did not correct for local motion 
within the scene.  Because the images were low-light with low 
SNR values, the temporal sigma filter was unable to distinguish 
between noise and genuine signal structure difference when 
filtering.  As a result, ghosting artifacts appeared in the moving 
regions. 

 



 

 

 
Figure 4.  Global motion estimation followed by temporal sigma filtering.  
Because of the low SNR of the signals, the sigma filter was unable to 
differentiate noise from different image content caused by motion. 

The previous result was improved by including a second local 
motion estimation and block exclusion step, using blocks of size 
32 × 32.  This result is shown in Figure 5. 

 

 
Figure 5.  Global motion estimation followed by local motion estimation 
refinement.  Matching blocks with too high an error  were excluded from the 
temporal sigma filter. 

As can be seen, the ghosting artifacts were corrected by 
incorporating the local motion estimation that excluded blocks that 
were classified as poor matches.  The region surrounding the 
person’s head remained very noisy, a result of the fact that few if 
any frames provided successful block matches in that region.  In 
cases where no frames provided a good match, the resulting region 
was equivalent to the original reference image region.  Figure 6 
shows a block exclusion map that represents the number of frames 
with successful block matches for a particular region.  Black 
regions imply that no matches were found (only the reference 
image was included in the temporal sigma filter).  White regions 
imply that all six images contributed data to the sigma filter. 

 

 
Figure 6.  Map representing contributions to the temporal sigma filter.  Most 
of the background regions used data from all six images (white regions) 
while some blocks near the person’s hands and head used only the 
reference image and, therefore, achieved no noise reduction at all. 

A final improvement (Figure 7) was achieved by including a 
spatial sigma filter step.  Regions in which either five or six 
images contributed to the temporal sigma filter used a 3 × 3 spatial 
sigma filter.  Regions in which either three or four images 
contributed to the temporal filter used a 5 × 5 spatial sigma filter.  
Regions for which only one or two images contributed to the 
temporal sigma filter used a 7 × 7 spatial sigma filter. 

 

 
Figure 7.  Noise reduction using both temporal filtering and spatial sigma 
filtering to blend regions that did not benefit from temporal filtering. 

The spatial sigma filter provided a moderate additional noise 
reduction benefit, and achieved some success at blending between 
regions with different amounts of temporal noise reduction, at a 
cost of decreased sharpness.  Significant noise remained in the 
person’s hands and head, along with considerable blurring.  

Summary 
In this paper we address the problem of improving low-light 

camera performance by using multiple captures.  Global and local 
motion estimation techniques are proposed to align the images, 
followed by temporal filtering to achieve noise reduction.  An 
algorithm is proposed to detect regions of unmatched local motion, 
and exclude them from temporal averaging.  Adaptive spatial 
filtering is also proposed to further smooth the resulting image.  
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